CTLA-4 differentially regulates the immunological synapse in CD4 T cell subsets.

نویسندگان

  • Rachael P Jackman
  • Fran Balamuth
  • Kim Bottomly
چکیده

Primary murine Th1 and Th2 cells differ in the organization of the immunological synapse, with Th1 cells, but not Th2 cells, clustering signaling molecules at the T cell/B cell synapse site. We sought to determine whether differential costimulatory signals could account for the differences observed. We found that Th2 cells express higher levels of CTLA-4 than Th1 cells, and demonstrated that Th2 cells lacking CTLA-4 are now able to cluster the TCR with the same frequency as Th1 cells. Furthermore, reconstitution of CTLA-4 into CTLA-4-deficient Th2 cells, or into Th1 cells, inhibits the clustering of the TCR. We have also shown that Th2 cells, but not Th1 cells, show variations in the organization of the immunological synapse depending on levels of expression of CD80/CD86 on the APC. These studies demonstrate a unique role for CTLA-4 as a critical regulator of Th2 cells and the immunological synapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CTLA-4: acting at the synapse.

Successful immune cell control requires a delicate balance of positive and negative regulatory signals. Costimulatory pathways involving molecules such as CD28, inducible costimulator (ICOS), 4-1BB, and CD40L are essential coactivators of proliferation, cytokine production, and cell migration. To balance these signals, cell surface molecules like Fas, tumor necrosis factorreceptor (TNFR), and p...

متن کامل

Hierarchical regulation of CTLA-4 dimer-based lattice formation and its biological relevance for T cell inactivation.

CTLA-4 is an activation-induced, homodimeric inhibitory receptor in T cells. Recent crystallographic reports have suggested that it may form lattice-like arrays on the cell surface upon binding B7.1/B7.2 (CD80, CD86) molecules. To test the biological relevance of these CTLA-4-B7 lattices, we introduced a C122A point mutation in human CTLA-4, because this residue was shown to be essential for di...

متن کامل

Negative Regulation of T Cell Receptor–Lipid Raft Interaction by Cytotoxic T Lymphocyte–associated Antigen 4

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is an essential negative regulator of T cell activation. Recent evidence suggests that CTLA-4 association with the immunological synapse during contact with antigen-presenting cells is important for its inhibitory function. In the present study, we observed a direct interaction of CTLA-4 with the phosphorylated form of T cell receptor (TCR)ze...

متن کامل

CD80 cytoplasmic domain controls localization of CD28, CTLA-4, and protein kinase Ctheta in the immunological synapse.

The binding of costimulatory ligand CD80 to CD28 or CTLA-4 on T cells plays an important role in the regulation of the T cell response. We have examined the role of the cytoplasmic domain of CD80 in murine T cell costimulation and its organization in the immunological synapse (IS). Removal of CD80 cytoplasmic tail decreased its effectiveness in costimulating T cell proliferative response and ea...

متن کامل

Surface Cytotoxic T Lymphocyte–associated Antigen 4 Partitions Within Lipid Rafts and Relocates to the Immunological Synapse under Conditions of Inhibition of T Cell Activation

T cell activation through the T cell receptor (TCR) involves partitioning of receptors into discrete membrane compartments known as lipid rafts, and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Compartmentalization of negative regulators of T cell activation such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is unknown. Recent cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 178 9  شماره 

صفحات  -

تاریخ انتشار 2007